
pylearn Documentation
Release

Jørgen Kvalsvik

Apr 04, 2018

Contents:

1 Functions 1
1.1 Communication is key . 1
1.2 The art of naming functions . 4
1.3 Is a function ever too small? . 4
1.4 It’s only called once, should I still make it a function? . 5
1.5 Testing . 5
1.6 Glossary . 5

2 Indices and tables 7

i

ii

CHAPTER 1

Functions

One of the things people learning programming tends to struggle with is program structure, in especially as the program
size increases. What starts out as a 10-line let me see if this works often develops into a 2000 line behemoth of fragile,
deeply entngled blocks of code with lots of implicit dependencies.

Knowing when and how to break a program into smaller pieces is an art, but a few guidelines goes a long way.

There’s lots of documents out there describing how to make functions, so this will primarily look into why, and certain
subtleties that often come up.

1.1 Communication is key

To start this bit off, let’s break down a simple function signature:

def fn(param1, param2):

In plain English it reads: whatever comes next is a new function named fn, parameterised over the two values
param1 and param2.

In terms of communication, two wonderful things happenes:

1. We’re labeling a series of steps a new name

2. We’re letting everyone know what this computation depends on

This might seem a bit fluffy, so we’ll explore this a bit with some examples, but before we get into that, let’s allow
ourselves to be slightly dogmatic:

1. You can always break your program into smaller pieces

2. How something is computed is never interesting to your program

3. Most steps and sub computations are generalisable

4. Never depend on anything that isn’t a parameter to your function

5. Never modify your input parameters

1

pylearn Documentation, Release

6. Never modify enclosing or global variables

7. Do one thing and one thing only

If you follow these guidelines, your functions are almost always testable. For more details on testing, see the Testing.

Let’s look at a good function - this example is borrowed from http://composingprograms.com/pages/
14-designing-functions.html

def pressure(v, t, n):
"""Compute the pressure in pascals of an ideal gas.

Applies the ideal gas law: http://en.wikipedia.org/wiki/Ideal_gas_law

v -- volume of gas, in cubic meters
t -- absolute temperature in degrees kelvin
n -- particles of gas
"""
k = 1.38e-23 # Boltzmann's constant
return n * k * t / v

There’s a lot going on, so let’s look at what this tells us:

• It computes the pressure

• It depends on three parameters, and three parameters only

– volume

– temperature

– particles

• It clearly states the relationship between the input parameters (in terms of phyiscal units), through its docstring

When calculating pressure is a function, it’s very easy to see at a glance what a line of code is intended to do, even
though it hides what it does. This distinction is subtle, but important for high-quality programs.

df = pandas.read_csv("gas.csv")
for row in df.itertuples():

gas = row['name']
v = row['volume']
t = row['temperature']
n = row['particles']
print("{} has pressure {}Pa", gas, pressure(v, t, n))

This reads a CSV file with the four columns name, volume, temperature, particles, and prints the pressure.

Why bother, it’s just a simple function? Yes it is, but now we have a name for it. When understanding the flow of
the program, n * k * t / v could be anything, but pressure computes pressure.

But I know the ideal gas law Good! But the ideal gas law isn’t essential, the pressure is. Additionally, the function
can hold more metadata and description, and do verification for you. Besides, someone else reading your
program might not be as familiar, and pressure(v, t, m) communicates your intent, n * k * t / v
doesn’t.

Another cool thing is that you can quickly figure out where in your program pressure is computed, by looking
for uses of this function, instead of having to read (and understand!) all the code. Imagine looking for both n *
k * t / v and (t*k/v)*n

But I only need to compute pressure in this loop Most programs start out that way, until you need to compute pres-
sure again. It’s often fine to not make a function until you require this a second time, but then make sure you do.
Even if it seems like more work now, it always saves time and work in the long run.

2 Chapter 1. Functions

http://composingprograms.com/pages/14-designing-functions.html
http://composingprograms.com/pages/14-designing-functions.html

pylearn Documentation, Release

Besides, you might need pressure in a different program altogether, and now you know where to look, and you
have a solid, tested implementation to use. Even better, put it in a library!

It’s hard to come up with a good function name Yes it is, it’s in fact very hard. It’s not without its benefits though.
Small functions with very limited scope (do one thing only) tend to be easier to name. Naming things also forces
you to think very hard on what exactly something is, and what it tries to accomplish.

Often, when things are difficult to name, it’s because it’s either still not quite understood or its scope is too large,
and becomes easier to name once it’s split into approperiate chunks.

Furthermore, since a function is a natural barrier to the outside world, they force you to clearly state your
parameters and pre-conditions, things that without good functions are completely implicit and usually very
difficult to figure out. Even though some precondition seems obvious now, it usually isn’t already in a week or
two.

But this is just a throaway script It is until it isn’t. It’s not a lot of work to separate in cleaner chunks, and it makes
it easier to verify things works as intended. Besides, that’s no reason to be sloppy, we don’t treat our other tools
that way.

Note: Notice that most variables have 1-letter names, which is generally a bad idea - however, in this case the variables
live in a 4-line block and are not visibe outside the loop, cleanly map to the parameters of the pressure function, and
more importantly, have a describing name deriving from the CSV file column header in the row[col] lookup.

Let’s review the example, because it turns out the CSV file didn’t record particles, but rather the weight, in kilograms,
because it turns out this was a shipment manifest, and they didn’t care much for the amount of particles in the cargo
hold. This changes our pressure function slightly.

def pressure(v, t, m, M):
"""Compute the pressure in pascals of an ideal gas.

Applies the ideal gas law: http://en.wikipedia.org/wiki/Ideal_gas_law

v -- volume of gas, in cubic meters
t -- absolute temperature in degrees kelvin
M -- molar mass of gas
m -- mass of gas, in g
"""
L = 6.022e22 # Avogrado's constant
k = 1.38e-23 # Boltzmann's constant
R = L * k
return m * R * t / (M * v)

This actually introduces a new problem; we don’t have molar mass in our database. Furthermore, it’s clumsy to work
with molar masses and kelvins.

def pressure(vol, temp, mass, gas):
"""Compute the pressure in pascals of an ideal gas.

Applies the ideal gas law: http://en.wikipedia.org/wiki/Ideal_gas_law

vol -- volume of gas, in cubic meters
temp -- absolute temperature in degrees celcius
mass -- mass of gas, in kilograms
gas -- name of gas
"""

molarmass = {

1.1. Communication is key 3

pylearn Documentation, Release

'benzene': 78.114,
'carbon monoxide': 28.010,
...

}

if gas not in molarmass:
problem = 'Unknown molar weight for {}. '.format(gas)
solution = 'Please add to the molar weight table'
raise ValueError(problem + solution)

m = molarmass[gas]
t = temp - 273 # convert to kelvin
M = mass * 1000 # convert to kg
return ideal_gas(vol, t, m, M)

The function now does a lot of unit conversion for us, and even some simple error checking. Over time, these functions
tend to become more sophisticated. In this function, our previous pressure function has been renamed to ideal_gas.
Let’s go back to our original loop:

df = pandas.read_csv("gas.csv")
for row in df.itertuples():

gas = row['name']
vol = row['volume']
temp = row['temperature']
mass = row['weight']
P = pressure(vol, temp, mass, gas)
print("{} has pressure {}Pa", gas, P)

Notice how similar the two blocks are. This demonstrates how effective the function was at removing the uninteresting
details of computing pressure, and allows our program to be precise and elegant.

So what benefits to we draw from this?

Clarity The code is now clearer and communicates intent.

Maintainability Say you notice that (m / M) * (t * R / v) gives faster and more accurate results. If
pressure is a function, you only need to fix the definition, and all callers get the benefit. While it might
seem simple enough or irrelevant on a single-line statement, what if the function was 4 complicated steps?
What about 10 steps?

Replacability The original function was quite easily replaced by a (better) alternative. This is a lot harder when there
is no name you can look for.

Readability Smaller functions are easy to understand and easy to combine - it’s easier to build larger programs with
smaller functions.

1.2 The art of naming functions

TODO.

1.3 Is a function ever too small?

No.

4 Chapter 1. Functions

pylearn Documentation, Release

1.4 It’s only called once, should I still make it a function?

Yes.

1.5 Testing

TODO.

1.6 Glossary

Dependencies In the context of functions, dependencies usually refers to some state the program needs to be in for a
computation or code block to make sense or be correct. This includes variables and their values, what directory
you’re in, the presence and path to certain files.

Docstring Python has a built-in engine for self documentation called docstrings, which a lot of python tools are
aware of. They’re the special triple-quoted strings that immediately follow a function definition, the top of a
module, or a class definition. It’s a good idea to always write docstrings describing the intent, behaviour and
assumptions of a particular function. Often this stuff goes into comments, but comments are only visible when
in the implementation file, and not available from the outside.

def function(args):
"""<short description>

<long description>
"""
<function body>

1.4. It’s only called once, should I still make it a function? 5

pylearn Documentation, Release

6 Chapter 1. Functions

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

7

pylearn Documentation, Release

8 Chapter 2. Indices and tables

Index

D
Dependencies, 5
Docstring, 5

9

	Functions
	Communication is key
	The art of naming functions
	Is a function ever too small?
	It’s only called once, should I still make it a function?
	Testing
	Glossary

	Indices and tables

